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Capacity fading of LiMn2O4 electrode: Influence of
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Spinel-type Li-Mn oxides of formula LiMn2−xO4 were prepared by the Pechini method in the
range of 600–850◦C for 4 h. These spinels were investigated by X-ray powder diffraction,
SEM (scanning electron microscope), ICP, chemical titration and galvanostatic cycling at
0.2C rates. The effect of calcination temperature is evaluated. With increasing calcination
temperature, Mn valence-state of the powder decreased while size of powder increased.
The cycle life of the powder decreases with increasing calcination temperature. The results
indicated that the Mn valence-state and powder size of cathode powder should be
important variables to improve cycle life. The effect of cell polarization effect on the cycle
life is also discussed. C© 2004 Kluwer Academic Publishers

1. Introduction
Layered LiCoO2, LiNiO2 and spinel LiMn2O4 could
be used as the cathode materials of the lithium battery
[1–5] because of their high voltage (about 4 V) and
good rechargeability. Among these materials, LiMn2O4
is the most favored because of its low cost and environ-
mental friendly character [6–8]. For the past ten years,
the spinel LiMn2O4 has been studied extensively as
a positive electrode material for rechargeable lithium
and lithium ion cells [6–8]. However, the LiMn2O4
electrodes have showed capacity fading during cycling
[6–8]. Several possible reasons about capacity fading
are suggested; such as an organic-based electrolyte in a
high potential region [2], the dissolution of manganese
into electrolyte [3], Jahn-Teller distortion due to Mn3+
ion [2], change in crystal uniformity with cycling [4],
and so on.

In this work, we measured Mn valence-state of
LiMn2O4 as a function of calcination temperature by
using ICP and chemical titration method and mean
powder size by using powder size analyzer. Tak-
ing advantage of these analysis methods, we can
speculate the origin of capacity fading mechanism.
This paper aims to elucidate the effect of calcina-
tion temperature on the composition, the microstruc-
ture and the electrochemical properties of LiMn2O4
electrodes.

∗Author to whom all correspondence should be addressed.

2. Experimental
2.1. Powder preparation
In the present study, we have adapted the modified
Pechini process [9–11] to the synthesis of LiMn2O4.
The process is based on the ability of certain weak acids
to form polybasic acid chelates with various cations [9].
These chelates can undergo poly-esterification when
heated in a polyhydroxyl alcohol to form a solid poly-
meric resin throughout which the cations are uniformly
distributed [9]. Thus the resin retains homogeneity on
the atomic scale and may be calcined at low temperature
to yield fine oxides. Using this method, it is possible to
obtain phase-pure ultrafine crystalline spinel phases af-
ter firing the polymeric precursors at low temperatures.
The Pechini process was originally developed to pre-
pare metal oxide powders such as titanates and niobates
for capacitor [9]. Reagents of MnCO3 (Junsei Chemi-
cals; 99%), LiNO3 (Junsei Chemicals; 99%), CA (citric
acid: Aldrich Chemicals; 99.5%), EG (ethylene glycol:
Acros Organics; 99%) were used as starting materials.
MnCO3 was dissolved in dilute nitric acid with several
drops of hydrogen peroxide (Junsei Chemicals; 30%)
until a clear solution was obtained.

Pre-dissolved solutions of CA and EG with a molar
ratio (R = 2) of EG to CA was added to the clear cation
solutions. The mixed solutions were stirred on a hot
plate, which allowed the temperature to be controlled
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Figure 1 TG-DTA curve for LiMn2O4 precursor powder after air drying at 150◦C for 24 h: ramp rate of 5◦C/min.
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Figure 2 X-ray diffraction patterns of LiMn2O4 powder calcined at: (a)
600◦C for 4 h, (b) 700◦C for 4 h, (c) 800◦C for 4 h and (d) 850◦C for
4 h.

below 200◦C, until the solutions become a dark-brown
gel. Drying in oven to evaporate the residual water at
150◦C were followed and a puffed char was obtained.
The puffed precursors were self-ignited by increasing
oven temperature at 250◦C in air. The ignited pow-
ders were calcined in a furnace at 600–850◦C for 4 h
in air.

The thermal decomposition behavior of the dried
precursors was examined by using thermo-gravimetry
(TG) and differential scanning calorimeter (DSC) at
a heating rate of 5◦C/min with a STA409 instru-
ment. Phase analysis was carried out by powder X-ray
diffraction (XRD) with Cu Kα radiation in a Rigaku
X-ray diffractometer. Scanning electron microscopes
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Figure 3 Variation of lattice parameter of LiMn2O4 powder calcined at:
(a) 600◦C, (b) 700◦C for 4 h, (c) 800◦C for 4 h and (d) 850◦C for 4 h.
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Figure 4 Relative Li/Mn contents of LiMn2O4 powder according to
calcination temperature.
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Figure 5 Mn valence state of LiMn2O4 powder calcined at different
temperatures for 4 h.

(SEM) were obtained to examine the morphology of
the powder.

The chemical composition of these samples was an-
alyzed by using an inductively coupled plasma atomic
emission spectroscopy (ICP-AES). The average oxi-
dation state of manganese was determined by titration
with KMnO4. About 0.3 g of the sample was dissolved
in 20 ml of VOSO4 solution. During dissolution higher
Mn oxidation of (III) and (IV) are reduced Mn(II) by

Figure 6 Electron microscopes of calcined at: (a) 600◦C, (b) 700◦C, (c) 800◦C for 4 h, and (d) 850◦C.

the oxidation states of V(IV) to V(V). The excess V(IV)
is back titrated with 0.1 M KMnO4. Having titrated the
excess V(IV) all of the manganese is present as Mn(II),
and this amount is determined by further titration with
by KMnO4 in the presence of a complexing agent in
which the manganese is oxidized to Mn(III). The titra-
tion reaction can be expressed as follows:

Mn(2+η) + ηV4+ → ηV5+ + Mn2+

Mn(7+) + 5V4+ → 5V5+ + Mn2+

From the titration, the oxidation of manganese can
be calculated from charge neutrality assumption and
Li/Mn ratio (analyzed by ICP-AES).

The average particle size of lithium manganese ox-
ides was measured using particle size analyzer.

2.2. Electrochemical measurements
A cathode electrode was prepared by mixing LiMn2O4
powder with 10-wt% carbon black (Vulcan, XC-72)
and 5-wt%PVDF (poly-vinylidene fluoride) in NMP
(n-methyl pyrrodinone) solution. The stirred mixture
was spread on a 316 stainless steel ex-met. The
electrode specimens were dried under a vacuum at
120◦C.

A three-electrode cell was constructed for charge-
discharge experiments. Lithium foil (Foote Mineral,
99.9%) was used as the reference and counter-
electrodes, and a 1 M LiClO4-PC solution (pre-mixed
at Mitsubishi Chemicals) was used as the electrolyte.
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Figure 7 Initial discharge behavior of LiMn2O4: (a) 600◦C for 4 h, (b)
700◦C for 4 h, (c) 800◦C for 4 h and (d) 850◦C for 4 h.

Galvanostatic charge-discharge experiments were per-
formed using a potentiostat/galvanostat (EG&G PARC
Model 263). The cut-off voltages were set at 4.3 and
3.0 V for charge and discharge, respectively, at a current
rate of 0.2 C.

3. Results and discussion
3.1. Powder preparation
The thermal decomposition behavior of precursor is
presented in Fig. 1. The severe weight loss was ob-
served from 250 to 500◦C. There is a major exothermic
peak near 440◦C. It is concluded that most of the or-
ganic substances in the precursors are burned out at this
temperature.

The XRD patterns of calcined powder are presented
in Fig. 2. The calcined powders were indexed as pure
single-phase spinel. The lattice parameter is plotted
in Fig. 3 as a function of calcination temperature.
The lattice parameter increases with increasing calci-
nation temperature. Yoshio et al. [12] have reported
that smaller cell volume usually shows good recharge-
ability. We can predict that the rechargeability will im-
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Figure 8 Discharge capacity of Li/LiMn2O4 cell according to calcination temperature: (a) 600◦C for 4 h, (b) 700◦C for 4 h, (c) 800◦C for 4 h and (d)
850◦C for 4 h (0.2C).

prove by using lithium-rich or low temperature cal-
cination. The relative lithium contents using ICP are
given in Fig. 4. In this figure, we can observe the
evaporation of lithium above 800◦C calcination. Fig. 5
shows that observed average oxidation state of man-
ganese in the Li1+x Mn2−δO4 by using chemical titra-
tion decreases with increasing calcination temperature.
Therefore, it is found that increasing calcination tem-
perature increase the crystallinity of Li1+x Mn2−δO4
powders, but reduces the average oxidation state of
manganese.

The final morphology of the calcined powder as
a function of calcination temperature is given in
Fig. 6. It is clear that the mean particle size in-
creases with increasing calcination temperature. The
shape is changed to facet shape with high calination
temperature.

3.2. Electrochemical characterization
Charge/discharge curves for LiMnO4 samples, cal-
cined at different temperatures, in Li/1 M LiClO4-PC
solution/LiMn2O4 cells are shown in Fig. 7. The sam-
ple calcined at 600◦C for 4 h yielded the lowest specific
capacity (110 mAh/g) for discharge. The sample cal-
cined from 700 to 850◦C for 4 h yielded similar specific
capacity for both charge and discharge. We can predict
that the sample calcined at high temperature will in-
crease specific capacity for charge due to low oxidation
state of manganese. But cell polarization increased due
to decreased surface area for larger particles at high cal-
cinations temperature. So, the calcined powder 800◦C,
850◦C didn’t charge fully to 4.3 V. If the cut-off volt-
ages were set higher to 4.5 V, the temperature depen-
dence of specific capacity for charge will be increase
due to lowering Mn valence state at high temperature
heat treatment [13, 14].

The cycling performance for each condition of pow-
der preparation is shown in Fig. 8. The cycle life of
the cathode is improved by decreasing the calcination
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Figure 9 Capacity retention of Li/LiMn2O4 cell according to calcination
temperature as a function of powder size and Mn valence state.

temperature. This result is the same with that of Liu
et al. [13]. We carefully investigated capacity fading
mechanism as a function of powder size and Mn valence
state in Fig. 9. The cathode calcined at low temperature
(600◦C) show high cycle efficiency near 94% (defini-
tion of capacity retention in this work = 20th discharge
capacity/1st discharge capacity). The capacity retention
sharply decreases with increasing calcination tempera-
ture. This decay tendency is compatible to lowering of
Mn valence state and growing of particle size. The re-
sults indicate that Mn valence-state and powder size of
cathode powder can be important variables to capacity
fading of LiMn2O4 spinel.

4. Conclusions
In this work, LiMn2O4 spinel with a nominal compo-
sition was prepared by Pechini method as a function

of calcination temperature, and cathodic properties and
failure modes have been examined. The following ob-
servations are made.

(i) The samples calcined at low temperature have a
smaller lattice constant than the ones calcined at high
temperature. The morphology is changed from round
to facet shape with higher temperature.

(ii) The sample calcined at 600◦C for 4 h yielded
the lowest specific capacity (110 mAh/g) for both
charge and discharge. The sample calcined from 700
to 850◦C for 4 h yielded similar high specific capacity
(130 mAh/g) for both charge and discharge.

(iii) The capacity retention sharply decreases with
increasing calcination temperature. This decay ten-
dency is compatible to lowering of Mn valence state
and growing of particle size. There appears to be a
close relationship between Mn valence-state, powder
size of cathode powder and their cathode capacity
retention.
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